If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+84n=81
We move all terms to the left:
n^2+84n-(81)=0
a = 1; b = 84; c = -81;
Δ = b2-4ac
Δ = 842-4·1·(-81)
Δ = 7380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7380}=\sqrt{36*205}=\sqrt{36}*\sqrt{205}=6\sqrt{205}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-6\sqrt{205}}{2*1}=\frac{-84-6\sqrt{205}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+6\sqrt{205}}{2*1}=\frac{-84+6\sqrt{205}}{2} $
| n^2+84*n=64 | | .4n+6=-7 | | X-186+13x=80 | | 5/4=y+3/6 | | n^2+84*n=49 | | 26=n+10 | | -(3m-1)-8=-8+4(5m+6) | | n^2+84*n=36 | | 2x-3(-2)=-10 | | n^2+84*n=25 | | n^2+84*n=16 | | 5a+2=6-(7a) | | n^2+84*n=9 | | n^2+84*n=4 | | 4b+1=-7 | | 17+2h=1/2 | | 2x-3(-4)=-10 | | 2(x-3)=-4(-x+2) | | 3(-5-2p)-(-2+3p)=-2(2p-5)-4p+3 | | 12p+-11p=-5 | | −23(12c−9)=+14c | | 5x-33+6x=4=180 | | 5z+14z+-7z+4z=-16 | | 3T+30=6n | | x+35/x=-12 | | 3-(-5-2p)-(-2+3p)=|-2|(2p-5)-(-4p+3) | | 3x+2x+10=5(x+2) | | 112=-8x | | 2n+7(-4n-4)=4(n-7) | | 3w+4=-5 | | Y=100/(x-1) | | n^2+84*n=85 |